3.15.75 \(\int \frac {x}{1-x^8} \, dx\) [1475]

Optimal. Leaf size=17 \[ \frac {1}{4} \tan ^{-1}\left (x^2\right )+\frac {1}{4} \tanh ^{-1}\left (x^2\right ) \]

[Out]

1/4*arctan(x^2)+1/4*arctanh(x^2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {281, 218, 212, 209} \begin {gather*} \frac {\text {ArcTan}\left (x^2\right )}{4}+\frac {1}{4} \tanh ^{-1}\left (x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(1 - x^8),x]

[Out]

ArcTan[x^2]/4 + ArcTanh[x^2]/4

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x}{1-x^8} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,x^2\right )\\ &=\frac {1}{4} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,x^2\right )+\frac {1}{4} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,x^2\right )\\ &=\frac {1}{4} \tan ^{-1}\left (x^2\right )+\frac {1}{4} \tanh ^{-1}\left (x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 31, normalized size = 1.82 \begin {gather*} -\frac {1}{4} \tan ^{-1}\left (\frac {1}{x^2}\right )-\frac {1}{8} \log \left (1-x^2\right )+\frac {1}{8} \log \left (1+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(1 - x^8),x]

[Out]

-1/4*ArcTan[x^(-2)] - Log[1 - x^2]/8 + Log[1 + x^2]/8

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(27\) vs. \(2(13)=26\).
time = 0.18, size = 28, normalized size = 1.65

method result size
risch \(\frac {\ln \left (x^{2}+1\right )}{8}-\frac {\ln \left (x^{2}-1\right )}{8}+\frac {\arctan \left (x^{2}\right )}{4}\) \(24\)
default \(-\frac {\ln \left (x -1\right )}{8}-\frac {\ln \left (x +1\right )}{8}+\frac {\ln \left (x^{2}+1\right )}{8}+\frac {\arctan \left (x^{2}\right )}{4}\) \(28\)
meijerg \(-\frac {x^{2} \left (\ln \left (1-\left (x^{8}\right )^{\frac {1}{4}}\right )-\ln \left (1+\left (x^{8}\right )^{\frac {1}{4}}\right )-2 \arctan \left (\left (x^{8}\right )^{\frac {1}{4}}\right )\right )}{8 \left (x^{8}\right )^{\frac {1}{4}}}\) \(40\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(-x^8+1),x,method=_RETURNVERBOSE)

[Out]

-1/8*ln(x-1)-1/8*ln(x+1)+1/8*ln(x^2+1)+1/4*arctan(x^2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 23, normalized size = 1.35 \begin {gather*} \frac {1}{4} \, \arctan \left (x^{2}\right ) + \frac {1}{8} \, \log \left (x^{2} + 1\right ) - \frac {1}{8} \, \log \left (x^{2} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-x^8+1),x, algorithm="maxima")

[Out]

1/4*arctan(x^2) + 1/8*log(x^2 + 1) - 1/8*log(x^2 - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 23, normalized size = 1.35 \begin {gather*} \frac {1}{4} \, \arctan \left (x^{2}\right ) + \frac {1}{8} \, \log \left (x^{2} + 1\right ) - \frac {1}{8} \, \log \left (x^{2} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-x^8+1),x, algorithm="fricas")

[Out]

1/4*arctan(x^2) + 1/8*log(x^2 + 1) - 1/8*log(x^2 - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 22, normalized size = 1.29 \begin {gather*} - \frac {\log {\left (x^{2} - 1 \right )}}{8} + \frac {\log {\left (x^{2} + 1 \right )}}{8} + \frac {\operatorname {atan}{\left (x^{2} \right )}}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-x**8+1),x)

[Out]

-log(x**2 - 1)/8 + log(x**2 + 1)/8 + atan(x**2)/4

________________________________________________________________________________________

Giac [A]
time = 1.10, size = 24, normalized size = 1.41 \begin {gather*} \frac {1}{4} \, \arctan \left (x^{2}\right ) + \frac {1}{8} \, \log \left (x^{2} + 1\right ) - \frac {1}{8} \, \log \left ({\left | x^{2} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-x^8+1),x, algorithm="giac")

[Out]

1/4*arctan(x^2) + 1/8*log(x^2 + 1) - 1/8*log(abs(x^2 - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 13, normalized size = 0.76 \begin {gather*} \frac {\mathrm {atan}\left (x^2\right )}{4}+\frac {\mathrm {atanh}\left (x^2\right )}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x/(x^8 - 1),x)

[Out]

atan(x^2)/4 + atanh(x^2)/4

________________________________________________________________________________________